3.1.5 \(\int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx\) [5]

Optimal. Leaf size=46 \[ \frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d} \]

[Out]

arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 46, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2728, 212} \begin {gather*} \frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx &=-\frac {2 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 40, normalized size = 0.87 \begin {gather*} \frac {2 \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {a (1+\cos (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2])/(d*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.03, size = 54, normalized size = 1.17

method result size
default \(\frac {\sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \mathrm {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| 1\right )}{d \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \mathrm {csgn}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\) \(54\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*2^(1/2)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/csgn(cos(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)*InverseJacobiAM(1/2*d*x
+1/2*c,1)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 90 vs. \(2 (37) = 74\).
time = 0.54, size = 90, normalized size = 1.96 \begin {gather*} \frac {\sqrt {2} \log \left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) - \sqrt {2} \log \left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{2 \, \sqrt {a} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/2*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(c
os(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))/(sqrt(a)*d)

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 126, normalized size = 2.74 \begin {gather*} \left [\frac {\sqrt {2} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{2 \, \sqrt {a} d}, -\frac {\sqrt {2} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {-\frac {1}{a}}}{\sin \left (d x + c\right )}\right )}{d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(2)*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) -
 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/(sqrt(a)*d), -sqrt(2)*sqrt(-1/a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c)
 + a)*sqrt(-1/a)/sin(d*x + c))/d]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a \cos {\left (c + d x \right )} + a}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(1/sqrt(a*cos(c + d*x) + a), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 93 vs. \(2 (37) = 74\).
time = 0.49, size = 93, normalized size = 2.02 \begin {gather*} \frac {\frac {\sqrt {2} \log \left ({\left | \frac {1}{\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\sqrt {2} \log \left ({\left | \frac {1}{\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/4*(sqrt(2)*log(abs(1/sin(1/2*d*x + 1/2*c) + sin(1/2*d*x + 1/2*c) + 2))/(sqrt(a)*sgn(cos(1/2*d*x + 1/2*c))) -
 sqrt(2)*log(abs(1/sin(1/2*d*x + 1/2*c) + sin(1/2*d*x + 1/2*c) - 2))/(sqrt(a)*sgn(cos(1/2*d*x + 1/2*c))))/d

________________________________________________________________________________________

Mupad [B]
time = 0.00, size = 45, normalized size = 0.98 \begin {gather*} \frac {\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |1\right )\,\sqrt {\frac {2\,\left (a+a\,\cos \left (c+d\,x\right )\right )}{a}}}{d\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + a*cos(c + d*x))^(1/2),x)

[Out]

(ellipticF(c/2 + (d*x)/2, 1)*((2*(a + a*cos(c + d*x)))/a)^(1/2))/(d*(a + a*cos(c + d*x))^(1/2))

________________________________________________________________________________________